FOXA1 defines cancer cell specificity.
نویسندگان
چکیده
A transcription factor functions differentially and/or identically in multiple cell types. However, the mechanism for cell-specific regulation of a transcription factor remains to be elucidated. We address how a single transcription factor, forkhead box protein A1 (FOXA1), forms cell-specific genomic signatures and differentially regulates gene expression in four human cancer cell lines (HepG2, LNCaP, MCF7, and T47D). FOXA1 is a pioneer transcription factor in organogenesis and cancer progression. Genomewide mapping of FOXA1 by chromatin immunoprecipitation sequencing annotates that target genes associated with FOXA1 binding are mostly common to these cancer cells. However, most of the functional FOXA1 target genes are specific to each cancer cell type. Further investigations using CRISPR-Cas9 genome editing technology indicate that cell-specific FOXA1 regulation is attributable to unique FOXA1 binding, genetic variations, and/or potential epigenetic regulation. Thus, FOXA1 controls the specificity of cancer cell types. We raise a "flower-blooming" hypothesis for cell-specific transcriptional regulation based on these observations.
منابع مشابه
Cell-type selective chromatin remodeling defines the active subset of FOXA1-bound enhancers.
Selective activity of a specific set of enhancers defines tissue-specific gene transcription. The pioneer factor FOXA1 has been shown to induce functional enhancer competency through chromatin openings. We have previously found that FOXA1 is recruited to thousands of regions across the genome of a given cell type. Here, we monitored the chromatin structure at FOXA1 binding sites on a chromosome...
متن کاملCurrent perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer
FOXA1 (also known as hepatocyte nuclear factor 3α, or HNF-3α) is a protein of the FKHD family transcription factors. FOXA1 has been termed as a pioneer transcription factor due to its unique ability of chromatin remodeling in which the chromatin can be decompacted to allow genomic access by nuclear hormone receptors, including androgen receptor (AR) and estrogen receptor (ER). In this review, w...
متن کاملAndrogen receptor-independent function of FoxA1 in prostate cancer metastasis.
FoxA1 (FOXA1) is a pioneering transcription factor of the androgen receptor (AR) that is indispensible for the lineage-specific gene expression of the prostate. To date, there have been conflicting reports on the role of FoxA1 in prostate cancer progression and prognosis. With recent discoveries of recurrent FoxA1 mutations in human prostate tumors, comprehensive understanding of FoxA1 function...
متن کاملFoxA1 specifies unique androgen and glucocorticoid receptor binding events in prostate cancer cells.
The forkhead protein FoxA1 has functions other than a pioneer factor, in that its depletion brings about a significant redistribution in the androgen receptor (AR) and glucocorticoid receptor (GR) cistromes. In this study, we found a novel function for FoxA1 in defining the cell-type specificity of AR- and GR-binding events in a distinct fashion, namely, for AR in LNCaP-1F5 cells and for GR in ...
متن کاملTumor and Stem Cell Biology Androgen Receptor-Independent Function of FoxA1 in Prostate Cancer Metastasis
FoxA1 (FOXA1) is a pioneering transcription factor of the androgen receptor (AR) that is indispensible for the lineage-specific gene expression of the prostate. To date, there have been conflicting reports on the role of FoxA1 in prostate cancer progression and prognosis. With recent discoveries of recurrent FoxA1 mutations in human prostate tumors, comprehensive understanding of FoxA1 function...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science advances
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2016